Категории
Новые продукты
LDC-100 скалыватель оптических волокон большого диаметра * Применимо к волокнам диаметром 80~600 мкм *Вакуумный насос с V-образной канавкой удобно класть волокно *Прочное лезвие, срок службы более 20000 раз *Хранение данных 4000 групп * Удобное графическое меню, простое в эксплуатации Больше
S-22 Многожильный сварочный аппарат для оптоволокна Первый полностью автоматический многоядерный сварочный аппарат F iber Fusion в Китае _ _ _ Больше
Поляризация поддерживая (PM) в волокна splicer сплавливания с-12 * Ядра к ядру согласование, низкие потери сплайсинга * Наблюдение Endview и профиль и выравнивание * Автоматическая калибровка дуги и сплайсинга * ПМ волокна 45 и 90 градусов регулировка Больше
S-37 LDF Специальный сварочный аппарат для сварки волокон SHINHO S-37 — это последняя модель, которую мы разработали, она может сращивать оптические волокна диаметром от 125 до 400 мкм с низкими потерями при сращивании. Мы оснастили машину 3 различными держателями волокна и 2 парами запасных электродов. Больше
сердечник для выравнивания волокон сращиватель x900 сварочный аппарат с шестью двигателями, настоящая технология центровки сердечника. Сплайсинг 6 с, нагрев 16 с, автоматическое определение типов волокон. используется для wan / man / телекоммуникационных проектов. Больше
Надежный многофункциональный дуговой сварочный аппарат S16 Прочный промышленный дизайн, противоударный, пыленепроницаемый и водонепроницаемый. многофункциональный держатель для оголенного волокна, патч-кордов, кабеля и т. д. быстрое соединение и нагрев, автоматическая калибровка дуги. Больше
Термостриппер SHINHO X-18 для ленточных волокон Термостриппер Shinho X-18 — это недавно разработанный ручной термостриппер, специально разработанный для неразрушающего термозачистки оболочки ленточного кабеля до 12 волокон. Хороший и надежный инструмент для сращивания ленточных волокон. Больше
Высокоточный скалыватель оптических волокон X-50D Небольшой размер и легкий вес, прост в эксплуатации. Высокая точность и стабильная работа. Срок службы лезвия более 48000 раз, длина скола волокна 5 ~ 20 мм. Материал высокого качества Больше
How Fiber Core & Cladding Sizes Shape High-Power Fiber-Laser Performance
In high-power fiber lasers—key in medical, industrial, and scientific applications—the design of the fiber’s core and cladding dimensions is instrumental. These structural parameters govern power handling, beam quality, efficiency, and thermal performance. Here’s how.
Increased Power Threshold & Reduced Nonlinear Effects
Enlarging the fiber core reduces optical intensity, raising the damage threshold and suppressing nonlinear effects like stimulated Brillouin and Raman scattering—crucial for power scaling. Modern lasers leverage larger cores to push into kilowatt regimes.
Trade-off: Multimode Propagation
However, bigger cores often support multiple modes, lowering beam quality. In contrast, single-mode fibers with core diameters around 8–10 µm and cladding of ~125 µm preserve clean beam profiles, albeit at restricted power capacities.
Double-Clad Fibers for Efficient Pumping
High-power lasers use double-clad fibers, where an inner cladding guides pump light (from lower-brightness sources) around a doped core. This architecture allows efficient cladding pumping, enabling high output powers while maintaining beam quality.
Cladding Shape Matters
Non-circular inner cladding shapes (e.g., offset or rectangular) enhance pump absorption by directing light more thoroughly through the core. Circular claddings tend to waste pump light by allowing many rays to bypass the core.
Cladding Size Trade-offs
A larger cladding allows coupling of more pump power, but absorption efficiency drops with the square of cladding diameter—requiring longer fibers—which can invite nonlinear effects. Designers must balance this trade-off.
Large-Mode-Area (LMA) Fibers
LMA fibers increase core diameter while maintaining single-mode operation by lowering numerical aperture or employing mode-suppressing techniques (like refractive-index engineering or coiling). This design allows high-power output with diffraction-limited beam quality.
Tapered Double-Clad Fibers (T-DCF)
T-DCF structures transition smoothly along the fiber from a narrow core to a wide multimode end. Light entering in single-mode at the narrow end remains in the fundamental mode even at the wide end, combining high-beam quality with increased power capacity.
Record-Setting Examples
Some tapered fibers feature core diameters up to 200 µm with numerical aperture ~0.11, enabling distortion-free amplification of 60 ps pulses with high peak energy.
Design Element |
Key Role & Trade-offs |
Core Size |
Larger core = higher power, reduced nonlinearity; but may degrade beam quality unless controlled. |
Cladding Size/Shape |
Critical for pump coupling efficiency and thermal load; non-circular shapes boost absorption. |
LMA Fibers |
Balance power with beam quality through mode control techniques. |
Tapered Fibers |
Achieve high power and beam fidelity in one structure—ideal for ultrafast or high-power systems. |
The delicate interplay between core and cladding dimensions—combined with smart geometric and refractive-index engineering—drives the evolution of fiber lasers. Designs like LMA and T-DCF fibers empower lasers to achieve unprecedented power while maintaining beam purity—paving the way for advanced medical devices, precision instrumentation, and beyond.
Следующая :
Fiber laser working method© Авторское право: SHINHO OPTICS LIMITED Все права защищены.